Heuristic algorithms
OptimalApplication.optimalportfolio_greedy — Functionoptimalportfolio_greedy(mkt::VariedCostsMarket) -> X, vUse a greedy heuristic that adds schools in decreasing order of mkt.f .* mkt.t ./ mkt.g to compute a heuristically optimal portfolio for the VariedCostsMarket defined by mkt.
OptimalApplication.optimalportfolio_simulatedannealing — Functionoptimalportfolio_simulatedannealing(
mkt::VariedCostsMarket;
temp::Float64=0.25,
red::Float64=0.0625,
nit::Integer=500,
verbose::Bool=false
) -> X, vUse a simulated annealing procedure to compute a heuristically optimal portfolio for the VariedCostsMarket defined by mkt. temp is the initial temperature, red is the reduction factor, and nit is the total number of iterations.