Heuristic algorithms
OptimalApplication.optimalportfolio_greedy
— Functionoptimalportfolio_greedy(mkt::VariedCostsMarket) -> X, v
Use a greedy heuristic that adds schools in decreasing order of mkt.f .* mkt.t ./ mkt.g
to compute a heuristically optimal portfolio for the VariedCostsMarket
defined by mkt
.
OptimalApplication.optimalportfolio_simulatedannealing
— Functionoptimalportfolio_simulatedannealing(
mkt::VariedCostsMarket;
temp::Float64=0.25,
red::Float64=0.0625,
nit::Integer=500,
verbose::Bool=false
) -> X, v
Use a simulated annealing procedure to compute a heuristically optimal portfolio for the VariedCostsMarket
defined by mkt
. temp
is the initial temperature, red
is the reduction factor, and nit
is the total number of iterations.